

Param Pujya Dr. Babasaheb Ambedkar Smarak Samiti's

Dr. Ambedkar Institute of Management Studies & Research

Deeksha Bhoomi, Nagpur - 440010 (Maharashtra State) INDIA NAAC Accredited with 'A' Grade

Tel: +91 712 6521204, 6521203 ,6501379 Email: info@daimsr.in

UNIT I MEASURES OF CENTRAL TENDENCY AND DISPERSION

Programme Educational Objectives

Our program will create graduates who:

- 1. Will be recognized as a creative and an enterprising team leader.
- 2. Will be a flexible, adaptable and an ethical individual.
- *3. Will have a holistic approach to problem solving in the dynamic business environment.*

Research Methodology & Quantitative Techniques Course Outcomes

CO1-Given a managerial problem and associated frequency distribution data, the student manager will be able to apply descriptive and inferential statistics to facilitate quick and rationale managerial decision making.

CO2-Given the data for two or more variables, the student manager will be able to estimate the strength of the relationship between two variables using 'Karl Pearson' and 'Spearman's Rank' correlation coefficient.

CO3-Given the data for two or more variables, the student manager will be able to predict / forecast using as moving averages, regression and time series analysis.

CO4-Given a managerial problem, the student manager will be able to formulate it as 'research problem' and also will be able to suggest suitable research methodology to identify workable solutions.

CO5-Given a business Problem/situation, the student manager will be able to develop methods and instruments (questionnaire/ interview schedule) for collection and measurement of qualitative as well as quantitative data using primary and secondary sources from a given sampling framework.

CO6-Given the sample statistics, the student manager will be able to apply Z, t and Chi-square tests to accept or reject the stated hypotheses for making sound decisions.

Learning Objective

- To learn the different measures of central tendency including mean, median and mode
- To learn various methods of calculating the measures of central tendency

ARITHMETIC MEAN – DIRECT METHOD

$$\overline{X} = \frac{1}{N} \sum X \text{ or } \overline{X} = \frac{\sum X}{N}$$

Wh<mark>ere,</mark>

Arithmetic Average,

X = Values of the variable,

 $\Sigma =$ Summation or Total,

N = number of items.

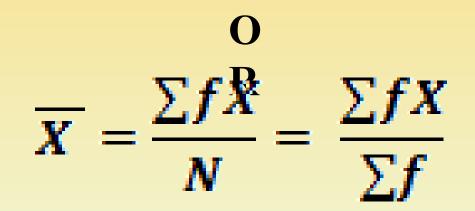
Calculate the Simple Arithmetic Average of the following items by Direct Method:

Size of the item (X)				
20	50	72		
28	53	74		
34	54	75		
39	59	78		
42	64	79		

ARITHMETIC MEAN – SHORTCUT METHOD

$$\overline{X} = A + \frac{\sum dX}{N}$$

 $\boxed{} = Arithmetic Average,$ A = Assumed Arithmetic Average, X = Values of the variable, $dX = (X - \boxed{})$ N = number of items.


Calculate the Simple Arithmetic Average of the following items using assumed mean as 50:

Size of the item (X)				
20	50	72		
28	53	74		
34	54	75		
39	59	78		
42	64	79		

MEAN OF DISCRETE SERIES – DIRECT METHOD

If f1, f2, f3 etc. stand respectively for the frequencies of the values X1, X2, X3 etc.,

$$\overline{X} = \frac{1}{N} \left(f_1 X_1 + f_2 X_2 + f_3 X_3 + \dots + f_n X_n \right)$$

The following table gives the number of children born per family in 735 families. Calculate the average number of children born per family.

Number of	Number	Number of	Number
Children Born	of	Children Born	of
per Family	Families	per Family	Families
0	96	7	20
1	108	8	11
2	154	9	6
3	126	10	5
4	95	11	5
5	62	12	1
6	45	13	1

MEAN OF DISCRETE SERIES – Shortcut Method

If f1, f2, f3 etc. stand respectively for the frequencies of the values X1, X2, X3 etc.,

$$\overline{X} = A + \frac{\sum f dX}{N}$$

Where, $\sum fdX =$ the total of the products of the deviations from the assumed average and the respective frequencies of the items.

Following data relate to sizes of shoes sold by a store during a given week. Find the average size by the short-cut method assuming mean size as 8.

Size of	No. of	Size of	No. of
Shoes	Pairs	Shoes	Pairs
4.5	1	8	95
5	2	8.5	82
5.5	4	9	75
6	5	9.5	44
6.5	15	10	25
7	30	10.5	15
7.5	60	11	4

SIZE (X)	No. (f)	$\mathbf{dx} = \mathbf{X} - 8$	fdx	Σ fdx = 169.5
4.5	1	-3.5	-3.5	
5	2	-3	-6	$\nabla f dX$
5.5	4	-2.5	-10	$\overline{X} = A + \frac{\sum f dX}{N}$
6	5	-2	-10	N
6.5	15	-1.5	-22.5	= 8 + (169.5/457)
7	30	-1	-30	
7.5	60	-0.5	-30	= 8 + (0.370)
8	95	0	0	
8.5	82	0.5	41	= 8.370
9	75	1	75	
9.5	44	1.5	66	
10	25	2	50	
10.5	15	2.5	37.5	
11	4	For Intern ³ Circulation Purpose Only	and Acade <mark>in2</mark> c	

The Following table gives the heights of 350 men. Calculate the mean height of the group.

Height in	No. of
cm	Persons
159	1
161	2
163	9
165	48
167	131
169	102
171	40
173	17

167.89

MEAN OF CONTINUOUS SERIES

$$\overline{X} = \frac{\sum fm}{N} = \frac{\sum fm}{\sum f}$$

Where, m = Midpoint Value of the class interval.

The following table gives the marks obtained by a set of students in a certain examination. Calculate the average marks per student.

	Number of		Number of
Marks	Students	Marks	Students
10-20	1	60-70	12
20-30	2	70-80	16
30-40	3	80-90	10
40-50	5	90-100	4
50-60	7		

Calculate the arithmetic average of the following by the direct method

Weekly Wages (in Rupees)	Number of Laborers
11-13	3
13-15	4
15-17	5
17-19	6
19-21	5
21-23	4
23-25	3

EXAMPLE 8 – Open Class Intervals

Calculate the arithmetic mean of the following series.

	No. of Student
Marks	S
< 10	4
10-20	6
20-30	10
30-40	20
40 <	10

EXAMPLE 9 – Open Class Intervals

Calculate the arithmetic mean of the following series.

Weekly	No. of
wages	Workers
Below 20	10
20-50	20
50-90	40
90-140	15
Above	
140	15

EXAMPLE 10 – Step Deviation Method

for simplification of calculations deviations can be further divided by a common factor and if this factor is represented by i

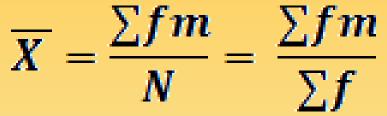
$$\overline{X} = A + \left(\frac{\sum f dX}{N}\right)i$$

The Following table gives the heights of 350 men. Calculate the mean height of the group.

No of persons	1	2	9	48	131	102	40	17
Height in cms	159	161	163	165	167	169	171	173
For Internal Circulation and Academic								

X	f	dx = X -	Step Dev. = $dx/2$	Tot Dev. = $f dx$		
159	1	167 - 8	- 4	-4		
161	2	- 6	- 3	-6		
163	9	- 4	- 2	- 18		
165	48	- 4	- 1	-48		
167	131	- 2	0	0		
169	102	2	1	102		
171	40	4	2	80		
173	17		3	51		
		6		$\sum \mathbf{f} \mathbf{dx} = 157$		
$\overline{X} = A$	$\overline{X} = A + \left(\frac{\Sigma f dX}{N}\right) i \overline{X} = 167 + \left(\frac{157}{350}\right) 2 = 167.89$					

EXAMPLE 11 – Missing Frequency


Find the missing frequency if the arithmetic mean of the series is 16.82.

Marks	Frequency
0-5	10
5-10	12
10-15	16
15-20	U
20-25	14
25-30	10
30-35	8

Solution:

X	f	m	fm	
0-5	10	2.5	25	
5-10	12	7.5	90	
10-15	16	12.5	200	
15-20	U	17.5	17.5 U	
20-25	14	22.5	315	
25-30	10	27.5	275	
30-35	8	32.5	260	
Σfm = (1165 +				
N = (70 + In UI) inculation and Academic 17.5 U)				

16.82 = (1165 + 17.5 U) / (70 + U)

1177.4 + 16.82 U = 1165 + 17.5 ... 1177.4 - 1165 = 17.5 U - 16.82 U

12.4 = 0.68U U = 18.23Approx 18 For internal Circulation and Academic Purpose Only

Example 12 - Weighted Mean

A candidate scores the following percentages in an exam – English 46%, Mathematics 67%, Sanskrit 72%, Economics 58%, Political science 53%.

It is agreed to give double weights to marks obtained in English and Mathematics as compared to other subjects.

What is the simple and weighted mean marks scored by the candidate?

MEDIAN

Median is defined as the middle most or the central value of the variable in a set of observations, when the observations are arranged either in ascending or in descending order of their magnitudes.

It divides the arranged series in two equal parts.

Median is a position average, whereas the arithmetic mean is a calculated average.

Find out the median of the following items: 5, 7, 9, 12, 10, 8, 7, 15, 21			
ITEMS GIVEN	REARRANG ED ITEMS	$M = Size \ of \left(\frac{N+1}{2}\right) th \ item$	
5	5	<	
7	7	$M = Size \ of \left(\frac{9+1}{2}\right) th \ item$	
9	7	$m = 5ize \ of \left(\frac{1}{2}\right)^{in item}$	
12	8		
10	9	$M = Size of 5^{th}$	
8	10	item	
7	12		
15	15		
21	21 For Inter Purpose	mal Circulation and Academic	

Find out the median of the following items: 391, 384, 591, 407, 672, 522, 777, 753, 2488 & 1490

ITEMS GIVEN	REARRANG ED ITEMS	~
391	384	
384	391	
591	407	
407	522	
672	591	
522	672	
777	753	
753	777	
2488	1490	
1490	2488 For Inte	ernal C
	D	\cap 1

$$M = Size \ of\left(\frac{N+1}{2}\right) th \ item$$

$$M = Size \ of\left(\frac{10+1}{2}\right) th \ item$$

M = Size of 5.5th item (591+672)/2 M = 1263/2 = 631.5

MEDIAN – DISCRETE SERIES					
Given below is the data of wages paid to different people. Find out the median wages paid.					
Wages	Wages 1000 1500 800 2000 2500 1800				
No. of persons 24 26 16 20 6 30					

Wages	1000	1500	800	2000	2500	1800
No. of persons	24	26	16	20	6	30
Wages	800	1000	1500	1800	2000	2500
No. of persons (f)	16	24	26	30	20	6
Cumulative Frequency	16	40	66	96	116	122

$$M = Size \ of\left(\frac{N+1}{2}\right) th \ item$$

$$M = Size \ of\left(\frac{122+1}{2}\right) th \ item$$

M = Size of 61.5th item = 1500

MEDIAN – DISCRETE SERIES

Given below is the data of grades scored by students of a class in an exam. Grades range from A+ as BEST and C as WORST. Find out the median grade of the class.

Grades	A+	C+	B	B +	Α	С
No. of students	5	9	20	14	6	6

MEDIAN – CONTINUOUS SERIES

$$Median = L + \frac{\frac{N}{2} - c.f.}{f} * i$$

L = the lower limit of the median class

N/2 = middle number

c.f. = the cumulative frequency of the class preceding the median class

f = the frequency of the median class and

i = the magnitude of the median class interval

Purpose Only

MEDIAN – CONTINUOUS SERIES

$$M = l_1 + \frac{l_2 - l_1}{f_1} (m - c)$$

M = the value of the median

- *l*¹ & *l*² = lower and upper limit of the class in which median lies
- $f_1 = frequency of the median class$
- m = middle number whose value is median (N/2)
- c = cumulative frequency of the class preceding the median class

MEDIAN – CONTINUOUS SERIES

Find the median of the following distribution

Class intervals		Class intervals	
(Rs.)	Frequency	(Rs.)	Frequency
1-3	6	9-11	21
3-5	53	11-13	16
5-7	85	13-15	4
7-9	56	15-17	4

CLASS	FREQ.	CUM. FREQ.
1 – 3	6	6
3 – 5	53	59
5 – 7	85	144
7 – 9	56	200
9 – 11	21	221
11 – 13	16	237
13 - 15	4	241
15 - 17	4	245

$$\frac{N}{2} = \frac{245}{2} = 122.5$$

$$Median = L + \frac{\frac{N}{2} - c.f.}{f} * i$$

Median = 5 + $\frac{122.5 - 59}{85} * 2$
Median = 6.494 = 6.5

$$M = l_1 + \frac{l_2 - l_1}{f_1} (m - c)$$

$$M = 5 + \frac{7-5}{85} (122.5 - 59) = 6.5$$

MEDIAN – CONTINUOUS SERIES

Find the median age of the following distribution

	No. of		No. of
Age	Persons	Age	Persons
55-60	7	35-40	30
50-55	13	30-35	33
45-50	15	25-30	28
40-45	20	20-25	14

ANSWER: MEDIAN = 35.83

WHEN LESS THAN VALUES ARE GIVEN

Find the median of the following data

Value	Frequency	Value	Frequency
Less than		Less than	
10	4	50	96
Less than		Less than	
20	16	60	112
Less than		Less than	
30	40	70	120
Less than		Less than	
40	76	80	125

WHEN MORE THAN VALUES ARE GIVEN

Find the median of the following data

<u> </u>		
Size	Frequency	
More than		
50	0	
More than		
40	40	
More than		
30	98	
More than		
20	123	.7
More than		
10	165	

Purpose Only

WHEN ONLY MID VALUES ARE GIVEN

Find the median of the following data

	F waanna aan		F wa wu a way
Mid Value	Frequency	Mid Value	Frequency
115	6	165	60
125	25	175	38
135	48	185	22
145	72	195	3
155	116		

ANSWER : MEDIAN = 153.8

MODE

Mode is the value in a series which occurs most frequently.

In a frequency distribution mode is that variate which has the maximum frequency.

Examples

Average size of the shoe sold in a shop is 7.Average height of an Indian male is 5 feet 6 inches.Average size of the shirt sold in a ready made garment shop is 40.

MODE – INDIVIDUAL OBSERVATIONS.

Weight of 10 persons were taken randomly. Results were recorded in the below table. Calculate the Modal weight.

Sr. No.	Weight in Pounds	Sr. No.	Weight in Pounds
1	120	6	130
2	130	7	132
3	135	8	132
4	130	9	135
5	140	10	141

MODE – GROUPING METHOD.

Size	Frequency	Size	Frequency
5	48	13	52
6	52	14	41
7	56	15	57
8	60	16	63
9	63	17	52
10	57	18	48
11	55	19	40
12	50		

	Size X	Freque ncy f	Colu mn of two	Column of two leaving the first	colu mn of three	column of three leaving the first	column of three leaving the first two
		(I)	(11)	(111)	(IV)	(V)	(VI)
/	5 6	48 52	100	100	156		
	7 8	56 60	116	108		168	179
	9	63	120	123	180	175	
	10 11	57 55	105	112		175	162
-	12 13	50 52		102	157	143	
	14 15	41 57	93	98	161		150
	16	63	120	115	101	172	
	17 18	52 48	100	For Integrate irculation	140	c	163
	19	40		Purpose Only			

Size X	Freque ncy f	Colu mn of two	Column of two leaving the first	colu mn of three	column of three leaving the first	column of three leaving the first two
	(1)	(11)	(111)	(IV)	(V)	(VI)
5 6	48 52	100	108	156		
7 8	56 60	116			168	179
<mark>9</mark> 10	<mark>63</mark> 57	120	123	180	175	
11 12	55 50	105	112	157		162
13 14	52 41	93	102	/	143	150
15	57	120	98	161	170	130
16 17	52	100	115		172	163
18 19	48 40		For Integral Girculation Purpose On P	1.4.0	С	

Size X	Freque ncy f	Colu mn of two	Column of two leaving the first	colu mn of three	column of three leaving the first	column of three leaving the first two
	(1)	(11)	(111)	(IV)	(V)	(VI)
5 6	48 52	100	108	156		
7 8	56 60	116	123		168	179
9 10	63 57	120	112	180	175	
11 12	55 50	105	102	157		162
<u>13</u> 14	<u>52</u> 41	93	98		143	150
15 16	57 63	120		161	172	
17 18	52 48	100	115	140		163
19	40		For Internal irculation Purpose Only	and Academi	c	

Siz		Freque ncy f	Colu mn of two	Column of two leaving the first	colu mn of three	column of three leaving the first	column of three leaving the first two
		(I)	(11)	(111)	(IV)	(V)	(VI)
5	_	48	100				
6		52	TOO	108	156		
7	_	56	116	100		168	
8		60		123			179
9		63	120	125	180		
10		57		112		175	
11		55	105				162
12		50	105	102	157		
13		52	93	TOZ		143	
14	1	41	55	98			150
15		57	120	50	161		
16	5	63	120	115		172	
17	7	52	100				163
18	8	48	TOO	For Internal dirculation	140		
19	9	40		Purpose Only	and Academi		

Size X	Freque ncy f	Colu mn of two	Column of two leaving the first	colu mn of three	column of three leaving the first	column of three leaving the first two
	(I)	(11)	(111)	(IV)	(V)	(VI)
5	48	100				
6	52	100	108	156		
7	56	116	100		168	
8	60		123			179
9	63	120		180		
10	57		112		175	
11	55	105	***			162
12	50	105	102	157		
13	52	93	102		143	
14	41		98			150
15	57	120	50	161		
16	63	120	115		172	
17	52	100	±±3			163
18	48	100	For Internet Back inculation	140	0	
19	40		Purpose Only			

Size X	Freque ncy f	Colu mn of two	Column of two leaving the first	colu mn of three	column of three leaving the first	column of three leaving the first two
	(I)	(11)	(111)	(IV)	(V)	(VI)
5 6	48 52	100	108	156		
7 8	56 60	116			168	179
9 - 10	63 57	120	123	180	175	
11	55	105	112	157		162
12 13	50 52	93	102	157	143	
14	41	33	98	1.01		150
15 16	57 63	120		161	172	
17	52	100	115			163
18	48	100	For Internet For	140 and Academi	c	
19	40		Purpose Only			

Size X	Freque ncy f	Colu mn of two	Column of two leaving the first	colu mn of three	column of three leaving the first	column of three leaving the first two
	(1)	(11)	(111)	<u>(IV)</u>	(V)	(VI)
5 6 7	48 52 56	100 116	108	156	168	
8	60	TTO	100			179
9 10 11	63 57 55	120	123 112	180	175	162
11 12 13	50 52	105	102	157	143	102
14 15	41 57	93 120	98	161		150
16 17	63 52	120	115		172	163
18 19	48 40	100	For Internation Purpose Only	140 and Academi	с	

MODE – GROUPING METHOD.

Size	Frequency
4	2
5	5
6	8
7	9
8	12
9	14
10	14
11	15
12	11
13	13

MODE – CONTINUOUS SERIES.

In a continuous series first the modal class is identified by grouping method and then the below formula is used to find out the MODE.

Mode =
$$l + \frac{f_m - f_1}{2f_m - f_1 - f_2} * i$$

Where,

 $l = Lower \ limit \ of \ modal \ class.$ $f_m = Frequency \ of \ modal \ class.$ $f_1 = Frequency \ of \ class \ preceding \ modal \ class.$ $f_2 = Frequency \ of \ class \ succeeding \ modal \ class.$ $i = width \ of \ modal \ class.$

For Internal Circulation and Academic

MODE – CONTINUOUS SERIES.

The following table gives the length of life of 150 electric lamps. Find the mode.

Life of Lamps	
(hours)	Frequency
0 to 400	4
400 to 800	12
800 to 1200	40
1200 to 1600	41
1600 to 2000	27
2000 to 2400	13
2400 to 2800	9
2800 to 3200	4

(Answerpos Mode = 1226.67 hours)

MEAN, MEDIAN & MODE.

Find the value of Mode from the following data (from Mean and Median)

Size of Item	Frequency
100-110	4
110-120	6
120-130	20
130-140	32
140-150	33
150-160	17
160-170	8
170-180	2

(Answer: Mode = 140.05) Purpose Only

MODE = 3 MEDIAN-2MEAN

MEAN, MEDIAN & MODE.

(A) Given, Mean = 20, Mode = 15, find the value of Median

(B) Given Mode = 25, Median = 20, find the value of Mean

(Answer: Median = 18.3) (Answer: Mean = 17.5)

References and Suggested Readings

Fundamentals of Statistics by S.C. Gupta Statistics Methods by S.P.Gupta