Param Pujya Dr. Babasaheb Ambedkar Smarak Samiti's

Dr. Ambedkar Institute of Management Studies \& Research

Deeksha Bhoomi, Nagpur - 440010 (Maharashtra State) INDIA NAAC Accredited with 'A' Grade

Tel: +91712 6521204, 6521203. 65501379 Email: info@daimsr.in

UNIT II Regression

Programme Educational Objectives

Our program will create graduates who:

1. Will be recognized as a creative and an enterprising team leader.
2. Will be a flexible, adaptable and an ethical individual.
3. Will have a holistic approach to problem solving in the dynamic business environment.

Research Methodology \& Quantitative Techniques Course Outcomes

CO1-Given a managerial problem and associated frequency distribution data, the student manager will be able to apply descriptive and inferential statistics to facilitate quick and rationale managerial decision making.

CO2-Given the data for two or more variables, the student manager will be able to estimate the strength of the relationship between two variables using 'Karl Pearson' and 'Spearman's Rank' correlation coefficient.

CO3-Given the data for two or more variables, the student manager will be able to predict / forecast using as moving averages, regression and time series analysis.

CO4-Given a managerial problem, the student manager will be able to formulate it as 'research problem' and also will be able to suggest suitable research methodology to identify workable solutions.

CO5-Given a business Problem/situation, the student manager will be able to develop methods and instruments (questionnaire/ interview schedule) for collection and measurement of qualitative as well as quantitative data using primary and secondary sources from a given sampling framework.

CO6-Given the sample statistics, the student manager will be able to apply Z , t and Chi-square tests to accept or reject the stated hypotheses for making sound decisions.

Regression Analysis.

For Internal Circulation and Academic
Purpose Only

Learning Ohjectives

The main objective of regression analysis is to explain the variation in one variable (called the dependent variable), based on the variation in one or more other variables (called the independent variables).

Correlation \& Regression coefficients.
 $$
r=\sqrt{b_{x y} X b_{y x}}
$$

Find the value of the correlation coefficient if regression coefficients of Y on X and X on Y are 0.46 and 0.8 respectively.

Answer : $\mathbf{r}=0.606$

Method of LEAST SQUARES.

The method of least squares is a mathematical technique.
It is used to obtain the equation of a line which best fits the given data.

Method of LEAST SQUARES.

Equation of a straight line is $\quad y=a+$ bx

Normal Equations for obtaining the values of a and b are as follows
(i) $\sum y=N a+b \sum x$
(ii) $\sum x y=a \sum x+b \sum x^{2}$

EXAMPLE.

Fit a straight line of Y on X from the following data:

X	0	1	2	3	4	5	6
\mathbf{Y}	2	1	3	2	4	3	5

SOLUTION.

SOLUTION.

$$
\begin{gathered}
74=21 a+91 b \\
\text { minus } \\
60=21 a+63 b \\
14=28 b \\
b=0.5
\end{gathered}
$$

Putting value of $b=0.5$ in above equations;
a-1357
$\mathrm{Y}=1.357+0.5 \mathrm{X}$
Equation of the line which fits the given data.

EXAMPLE.

Fit a straight line of Y on X from the following data:

$$
\begin{array}{|l|l|l|l|l|c|c|c|}
\hline X & 0 & 2 & 4 & 6 & 8 & 10 & 12 \\
\hline Y & 4 & 2 & 6 & 4 & 8 & 6 & 10 \\
\hline
\end{array}
$$

EXAMPLE.

Fit a straight line of X on Y from the following data:

X	0	2	4	6	8	10	12
\mathbf{Y}	4	2	6	4	8	6	10

Normal Equations for obtaining the values of a and b are as follows
(i) $\Sigma \mathbf{X}=\mathbf{N a}+\mathbf{b} \Sigma \mathbf{Y}$
(ii) $\Sigma \mathbf{X Y}=\mathbf{a} \boldsymbol{\Sigma} \mathbf{Y}+\mathbf{b} \boldsymbol{\Sigma} \mathbf{Y}^{\mathbf{2}}$

EXAMPLE.

From the following data obtain the Regression equations of Y on X and X on Y

X	6	2	10	4	8
Y	9	11	5	8	7

$$
\begin{gathered}
\text { Answer: } \\
\mathrm{Y}=11.9-0.65 \mathrm{X} \\
\mathrm{X}=16.4-1.3 \mathrm{Y} \\
\hline
\end{gathered}
$$

Derivation of Lines of Regression directly from the data. (DEVIATION FROM ACTUAL MEAN)
The equation of regression line of X on Y is

$$
\begin{aligned}
& X-\bar{X}=b_{x y}(Y-\bar{Y}) \\
& X-\bar{X}=\frac{r \sigma x}{\sigma y}(Y-\bar{Y})
\end{aligned}
$$

The equation of regression line of Y
on X is

$$
\begin{gathered}
Y-\bar{Y}=b_{y x}(X-\bar{X}) \\
Y-\bar{Y}=\frac{r \sigma y}{\sigma x}(X-\bar{X})
\end{gathered}
$$

Derivation of Lines of Regression directly from the data. (DEVIATION FROM ACTUAL MEAN)
Regression Coefficient of X on Y is

$$
\boldsymbol{b}_{x y}=\frac{\sum \mathbf{x y}}{\sum \mathbf{y}^{2}}
$$

Regression Coefficient of Y on X

$$
b_{y x}=\frac{i s \mathrm{xy}}{\sum \mathrm{x}^{2}}
$$

In these formulas x and y are

deviations from mean.

Regression Coefficients directly from the data.

The regression Coefficient of X on Y is

$$
b_{x y}=\frac{r \sigma x}{\sigma y}=\frac{\sum X Y-N \overline{\mathrm{X}} \overline{\boldsymbol{Y}}}{\sum Y^{2}-N(\bar{Y})^{2}}
$$

The regression Coefficient of Y on X

is

$$
b_{y x}=\frac{r \sigma y}{\sigma x}=\frac{\sum X Y-N \overline{\mathrm{X}} \bar{Y}}{\sum X^{2}-N(\bar{X})^{2}}
$$

EXAMPLE.

From the following data obtain the Regression equations using deviation of means method.

X	6	2	10	4	8
\mathbf{Y}	9	11	5	8	7

$$
\begin{array}{|c|}
\text { Answer: } \\
\mathrm{Y}=11.9-0.65 \mathrm{X} \\
\mathrm{X}=16.4-1.3 \mathrm{Y} \\
\hline
\end{array}
$$

X	X	X^{2}	Y	y	y^{2}	XY	$X-\bar{X}=b_{x y}(Y-\bar{Y})$
6	0	0	9	1	1	0	$b_{\mathrm{xy}}=\frac{\sum \mathrm{xy}}{\mathrm{y}^{2}}$
2	-4	16	11	3	9	-12	
10	4	16	5	-3	9	-12	$b_{\mathrm{xy}}=\frac{-26}{20}=-1.3$
4	-2	4	8	0	0	0	$X-6=-1.3(Y-8)$
8	2	4	7	-1	1	-2	$X-6=-1.3 Y+10.4$
30	0	40	40	0	20	-26	$X=-1.3 Y+16.4$

$$
\bar{X}=\frac{\sum X}{N}=\frac{30}{5}=6 \quad \bar{Y}=\frac{\sum Y}{N}=\frac{40}{5}=8
$$

For Internal Circulation and Academic
Purpose Only

EXAMPLE.

Following data relate to the scores of 9 salesmen of a company in an intelligence test and weekly sales in thousands. If the intelligence test score of a salesman is 65 what would be his weekly expected sales?

Test Score	50	60	50	60	80	50	80	40	70
Weekly									
Sales	30	60	40	50	60	30	70	50	60

Answer: Rs. 53750

EXAMPLE.

Following table shows ages (X) and blood pressure (Y) of 8 persons. Find the expected blood pressure of a person whose age is 49 years.

X
 5263453672654725 6253512579436033

Answer: 49.5

EXAMPLE.

In a correlation study the following values are obtained. Find the two regression equations that are associated with above values.

	X	Y
Mean	65	67
Std. Deviation	2.5	3.5
Correlation Coefficient	0.8	

Properties of Regression Coefficients.

1. Both regression coefficients will have the same sign i.e. positive or negative
2. Square root of the product of two regression coefficients will give Correlation coefficient.
3. If one regression coefficient is more than 1 then the other will be less than 1.
4. The regression coefficients will have the same sign as that of the correlation coefficient.
5. Arithmetic mean of Regression coefficient is greater than correlation coefficient.
6. The two regression lines intersect at coordinates which are mean of series X and series Y.

Derivation of Lines of Regression directly from the data. (DEVIATION FROM ASSUMED MEAN)
Regression Coefficient of X on Y is

$$
b_{x y}=r \frac{\sigma x}{\sigma y}=\frac{N \sum d x d y-\left(\sum d x X \sum d y\right)}{N \sum d y^{2}-\left(\sum d y\right)^{2}}
$$

Regression Coefficient of Y on X

$$
b_{y x}=r \frac{\sigma y}{\sigma x}=\frac{N \sum d x d y-\left(\sum d x X \sum d y\right)}{N \sum d x^{2}-\left(\sum d x\right)^{2}}
$$

In these formulas $d x$ and $d y$ are deviations from ASSUMED mean.

EXAMPLE.

From the following data obtain the Regression equations by taking deviation of series X from 5 and of series Y from 7.

X	6	2	10	4	8
\mathbf{Y}	9	11	5	8	7

$$
\begin{array}{|c|}
\text { Answer: } \\
\mathrm{Y}=11.9-0.65 \mathrm{X} \\
\mathrm{X}=16.4-1.3 \mathrm{Y}
\end{array}
$$

For Internal Circulation and Academic
Purpose Only

EXAMPLE.

A panel of two judges P and Q graded eight dance performances as below. However, Judge Q was absent during the 7 th performance. What might have been his ranking if judge Q had been present?

| \mathbf{P} | 46 | 42 | 44 | 40 | 43 | 41 | 37 | 45 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \mathbf{Q} | 40 | 38 | 36 | 35 | 39 | 37 | $\mathbf{?}$ | 41 |

> Answer:
> $\mathrm{Y}=+0.75 \mathrm{X}+5.75$
> 33.5 marks

For Internal Circulation and Academic
Purpose Only

EXAMPLE.

From the following regression equations find the mean values of X and Y series.

$$
\begin{aligned}
& 8 X-10 Y=-66 \\
& 40 X-18 Y=214
\end{aligned}
$$

Hint: Regression lines (X on Y and Y on X) cut each other at the point of mean.

Answer:
 Mean of X series $=13$
 Mean of Y series $=17$

For Internal Circulation and Academic
Purpose Only

EXAMPLE.

In a partially destroyed laboratory record of analysis of correlation data, only the following results are legible:
Variance of $X=9$
Regression equations
$8 \mathrm{X}-10 \mathrm{Y}+66=0$
$40 X-18 Y=214$
Find out:

1. The mean values of X and Y
2. Coefficient of correlation between X and Y
3.Standard Deviation of Y

Solution.

To find the mean values of X and Y we will solve the given equations:
Regression equations given:
(i) $8 \mathrm{X}-10 Y=-66$
(ii) $40 X-18 Y=214$

Multiplying equation (i) by 5 we get
(i) $40 \mathrm{X}-50 \mathrm{Y}=-330$

Subtracting equation (ii) from equation (i) we get:
$-32 Y=-544$
$\mathrm{Y}=-544 /-32=17$ (Mean of $\mathrm{Y}=17$)

Solution.

Substituting the value of $Y=17$ in equation (i)
(i) $8 X-10 Y=-66$
$8 \mathrm{X}-10(17)=-66$
$8 x-170=-66$
$8 X=104$
$X=104 / 8=13$ (Mean of $X=13$)

To find the Correlation coefficient (r) we must find the regression coefficients (bxy and byx). However, we don't know which equation is X on Y and which equation is Y on X. Solets assume equation (i) as X on Y

Solution.

Assuming equation (i) as X on Y we will try to find bxy
(i) $8 \mathrm{X}-10 \mathrm{Y}=-66$

$$
8 X=-66+10 Y
$$

$$
X=(-66 / 8)+(10 / 8) Y
$$

$$
X=a+b x y Y
$$

$$
b x y=10 / 8=1.25
$$

From equation (ii) we can find out byx
(ii) $40 X-18 Y=214$

$$
\begin{gathered}
Y=-(214 / 18)+(40 / 18) X \\
b x y=40 / 18=2.22
\end{gathered}
$$

Solution.

Here we can see that both the regression coefficients are greater than 1 which is not possible. Therefore, our assumption that equation (i) is equation of X on Y is wrong. Equation (i) is actually equation of Y on X. So we can write the equation as:
$-10 Y=-8 X-66$
$Y=(8 / 10) X+6.6$ which means that byx $=$ 0.8

From equation (ii) i.e. X on Y we get
$40 X=214+18 Y$ or $X=(214 / 40)+(18 / 40)$
Y which means that $b x y=18 / 40=0.45$

Solution.

We know that Correlation coefficient is square root of product of Regression coefficients:
$r=$ square root of $0.8 \times 0.45=0.6$

We can further calculate standard deviation of Y using the formula of Regression Coefficient.
Standard Deviation of $Y=4$

STANDARD ERROR OF ESTIMATES.

- The standard error of estimate measures the accuracy of the estimated figures.
- Smaller the value of standard error, closer will be the dots to the regression line and better will be the estimates.
- If standard error of estimate is zero then the is no variation about the line and correlation is perfect.

$$
\begin{aligned}
& S_{x y}=\sqrt{\frac{\sum\left(X-X_{c}\right)^{2}}{N}} S_{x y}=\sigma x \sqrt{1-r^{2}} \quad S_{x y}=\sqrt{\frac{\sum X^{2}-a \sum X-b \sum X Y}{N}} \\
& S_{y x}=\sqrt{\frac{\sum\left(Y-Y_{c}\right)^{2}}{N}} S_{y x}=\sigma y \sqrt{1-r^{2}} \quad S_{y x}=\sqrt{\frac{\sum Y^{2}-a \sum Y-b \Sigma X Y}{N}}
\end{aligned}
$$

Uses of Regression analysis.

1. Regression line facilitates to predict the values of dependent variable from the given value of independent variable.
2. Standard Error facilitates to obtain a measure of error involved in using the regression line as a basis of estimation.
3. Regression coefficients help us to calculate coefficient of correlation and coefficient of determination,
4. Regression analysis is a highly useful tool in Economics and business.

References and Suggested Readings

Fundamentals of Statistics by S.C. Gupta
Statistics Methods by S.P.Gupta

