Param Pujya Dr. Babasaheb Ambedkar Smarak Samiti's
Dr. Ambedkar Institute of Management Studies \& Research
Deeksha Bhoomi, Nagpur - 440010 (Maharashtra State) INDIA NAAC Accredited with 'A' Grade

Tel: $+917126521244,6521203$, 6501379
Email: info@daimsr.in

UNIT II CORRELATION

Programme Educational Objectives

Our program will create graduates who:

1. Will be recognized as a creative and an enterprising team leader.
2. Will be a flexible, adaptable and an ethical individual.
3. Will have a holistic approach to problem solving in the dynamic business environment.

Research Methodology \& Quantitative Techniques Course Outcomes

CO1-Given a managerial problem and associated frequency distribution data, the student manager will be able to apply descriptive and inferential statistics to facilitate quick and rationale managerial decision making.

CO2-Given the data for two or more variables, the student manager will be able to estimate the strength of the relationship between two variables using 'Karl Pearson' and 'Spearman's Rank' correlation coefficient.

CO3-Given the data for two or more variables, the student manager will be able to predict / forecast using as moving averages, regression and time series analysis.

CO4-Given a managerial problem, the student manager will be able to formulate it as 'research problem' and also will be able to suggest suitable research methodology to identify workable solutions.

CO5-Given a business Problem/situation, the student manager will be able to develop methods and instruments (questionnaire/ interview schedule) for collection and measurement of qualitative as well as quantitative data using primary and secondary sources from a given sampling framework.

CO6-Given the sample statistics, the student manager will be able to apply Z, t and Chi-square tests to accept or reject the stated hypotheses for making sound decisions.

Learning Ohjectives

Learn to identify the direction and strength of a correlation between two factors.

CORRELATION

- Correlation analysis is used to Measure strength of the association between two variables
- Only concerned with strength of the relationship
- No causal effect is implied

EXAMPLE

Scatter Plots

Scatter Plots

For Internal Circulation and Academic
Purpose Only

Scatter Plots

For Internal Circulation and Academic
Purpose Only

Correlation Coefficient

- The population correlation coefficient (rho) measures the strength of the association between the variables
- The sample correlation coefficient r is an estimate of ρ and is used to measure the strength of the linear relationship in the sample observations

Features of ρ and r

- Range between -1 and 1
- The closer to -1, the stronger the negative linear relationship
- The closer to 1 , the stronger the positive linear relationship
- The closer to 0 , the weaker the linear relationship

Features of ρ and r

Value of r
 Interpretation

$$
+ \text { or - } 1
$$

Perfect correlation between variables

+ or - 0.9 to 0.99
+ or - 0.7 to 0.9
+ or $\mathbf{- 0 . 5}$ to 0.7
Moderate degree of correlation
Low degree of correlation
+ or - 0 to 0.25
Very low degree of correlation

Karl Pearson's coefficient of correlation - r

$$
\mathrm{r}=\frac{\sum \mathrm{x} \boldsymbol{y}}{\sqrt{\sum \mathrm{x}^{2} \sum \mathrm{y}^{2}}}
$$

where,

r $=$ Correlation Coefficient

$x=(X-\bar{X})$
$y=(Y-\bar{Y})$

From the data given below find out the Pearson's correlation coefficient for the given data and comment on the nature of correlation.

ROL NUMBER OF STUDENT	MARKS IN MATHS (OUT OF 100)	MARKS IN STATISTICS (OUT OF 100)
1	50	60
2	70	85
3	40	52
4	30	38
5	80	90

For Internal Circulation and Academic
Purpose Only

Step 1

Calculating the Mean of first variable i.e. $\overline{\mathbf{X}}$

Step 2
Calculating the Mean of second variable i.e. $\overline{\mathbf{Y}}$

Step 3
Calculating the value of $x=X-\bar{X}$

Step 4

Calculating the value of $y=Y-\bar{Y}$

Step 5

Calculating the $\sum \mathrm{xy}$

Step 6
Calculating the $\sum x^{\wedge} \mathbf{2}$

Step 7
Calculating the $\sum y^{\wedge} 2$

Step 8
Putting the values in the formula to calculate r

$\begin{aligned} & \text { SR. } \\ & \text { NO. } \end{aligned}$	X	Y	$\begin{gathered} x=x \\ 54 \end{gathered}$	\mathbf{x}^{2}	$\begin{gathered} y=Y- \\ 65 \end{gathered}$	\mathbf{y}^{2}	XY
1	50	60	-4	16	-5	25	20
2	70	85	16	256	20	400	320
3	40	52	-14	196	-13	169	182
4	30	38	-24	576	-27	729	648
5	80	90	26	676	25	625	650
SUM	270	325		$\begin{gathered} 172 \\ 0 \end{gathered}$		$\begin{gathered} 194 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 182 \\ 0 \end{gathered}$
MEAN	54	65					

$$
\begin{aligned}
& \mathrm{r}=\frac{1820}{\sqrt{1720 \times 1948}} \\
& \mathbf{r}=+\mathbf{0 . 9 9}
\end{aligned}
$$

Comments:

> The Pearson's correlation coefficient is +0.99 which indicates that there is a very high degree of positive correlation between the marks obtained in Maths and marks obtained in Statistics.
$>$ In other words a student who scores high marks in Maths also scores high marks in Statistics whereas a student who scores low marks in Maths also score low marks in Statistics.

Example

Making use of the below data calculate the coefficient of correlation.

CASE	A	B	C	D	E	F	G	H
X1	10	6	9	10	12	13	11	9
X2	9	4	6	9	11	13	8	4

ANSWER: $\mathbf{r}=+\mathbf{0 . 8 9 6}$

Example

Making use of the below data calculate the coefficient of correlation. (HINT: Since r is a pure number, changing the scale of series does not affect its values).

CASE	A	B	C	D	E	F	G
	1000	2000	3000	4000	5000	6000	7000
X	0	0	0	0	0	0	0
Y	30	5	6000	8000	1000	1100	1300

ANSWER: $\mathbf{r}=+\mathbf{0 . 9 9 7}$

Example

From the data given below find out the Pearson's correlation coefficient for the given data and comment on the nature of correlation.

Date	BSE SENSEX closing	Gold prices (per 10 gms)
5th Sep 2012	17250	29000
6th Sep 2012	16800	29900
7th Sep 2012	17100	29500
8th Sep 2012		

Direct Method Karl Pearson's coefficient of correlation - r

In this method we need not calculate the deviations of items from mean.

$$
r=\frac{\mathrm{N} \sum \mathrm{XY}-\left(\sum \mathrm{X}\right)\left(\sum \mathrm{Y}\right)}{\sqrt{\mathrm{N} \sum X^{2}-\left(\sum \mathrm{X}\right)^{2}} \sqrt{\mathrm{~N} \sum Y^{2}-\left(\sum \mathrm{Y}\right)^{2}}}
$$

Example

Making use of the below data calculate the coefficient of correlation by Direct Method.

CASE	A	B	C	D	E	F	G	H
X1	10	6	9	10	12	13	11	9
X2	9	4	6	9	11	13	8	4

ANSWER: $\mathbf{r}=+\mathbf{0 . 8 9 6}$

Shortcut or Assumed Mean

 Method for calculation of -
r

When actual means are in fractions, the calculations of the correlation coefficient become complicated. So assume a mean and use the below formula:

$$
r=\frac{\mathrm{N} \sum \mathrm{dxdy}-\left\{\left(\sum \mathrm{dx}\right) \mathrm{x}\left(\sum \mathrm{dy}\right)\right\}}{\sqrt{\mathrm{N} \sum d x^{2}-\left(\sum \mathrm{dx}\right)^{2}} \sqrt{\mathrm{~N} \sum d y^{2}-\left(\sum \mathrm{dy}\right)^{2}}}
$$

Calculate the coefficient of correlation between X and Y from the following data. Assume 69 and 112 as the mean value for series X and Y respectively.

X	78	89	99	60	59	79	68	61
\mathbf{Y}	12	13	15	11	10	13	12	10
	7	6	2	7	6	3	8	

X	$\begin{aligned} & \text { dx } \\ & \text { (X- } \\ & 699 \end{aligned}$	dx ${ }^{2}$	Y	$\begin{gathered} \text { dy } \\ (\mathbf{Y} \\ \mathbf{1 1 2)} \\ \hline \end{gathered}$	dy ${ }^{2}$	dx dy
78	9	81	125	13	169	117
89	20	400	137	25	625	500
99	30	900	156	44	1936	1320
60	-9	81	112	0	0	0
59	-10	100	107	-5	25	50
79	10	100	136	24	576	240
68	-1	1	123	11	121	-11
61	-8	64	108	-4	16	32
$\begin{aligned} & \sum X= \\ & 593 \end{aligned}$	$\underset{=41}{\sum d x}$	$\sum_{\mathbf{1 7 2 7}}^{\mathrm{dx}^{2}=}$	$\begin{aligned} & \sum Y= \\ & 1004 \end{aligned}$	$\begin{gathered} \sum \mathrm{dy}= \\ 108 \end{gathered}$	$\left\lvert\, \begin{aligned} & \sum \mathrm{dy}^{2}= \\ & 3468 \end{aligned}\right.$	$\begin{gathered} \sum \mathrm{dxd} \\ \mathrm{y}= \\ 2248 \end{gathered}$

$$
\begin{gathered}
r=\frac{\mathrm{N} \sum \mathrm{dxdy}-\left\{\left(\sum \mathrm{dx}\right) \mathrm{x}\left(\sum \mathrm{dy}\right)\right\}}{\sqrt{\mathrm{N} \sum d x^{2}-\left(\sum \mathrm{dx}\right)^{2}} \sqrt{\mathrm{~N} \sum d y^{2}-\left(\sum \mathrm{dy}\right)^{2}}} \\
r=\frac{8 \times 2248-\{(41) \times(108)\}}{\sqrt{8 \times 1727-(41)^{2}} \sqrt{8 \times 3468-(108)^{2}}} \\
r=0.97
\end{gathered}
$$

Calculate Karl Pearson's correlation coefficient

 from the advertisement cost and sales as per data given below:| Advertisem
 ent Cost | 39 | 65 | 62 | 90 | 82 | 75 | 25 | 98 | 36 | 78 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| sales | 47 | 53 | 58 | 86 | 62 | 68 | 60 | 91 | 51 | 84 |

$($ Answer $r=+0.7804)$

For Internal Circulation and Academic
Purpose Only

A computer while calculating correlation coefficient between variables X and Y from 25 pairs of observations obtained the following results:
$\mathrm{N}=25 \quad \Sigma \mathrm{X}=125 \quad \Sigma \mathrm{X}^{2}=650$
$\Sigma Y=100 \quad \Sigma Y^{2}=460 \quad \Sigma X Y=508$
It was, however, discovered at the time of checking that two pairs of observation were not correctly copied. They were taken as $(6,14)$ and $(8,6)$ while the correct values were $(8,12)$ and (6, 8). Prove that the correct value of correlation coefficient should be 2/3.

Following are the results of B Com exam:
Calculate the coefficient of correlation between age and successful candidates in examination.

Age of students	$\begin{aligned} & 13- \\ & 14 \end{aligned}$	$\begin{aligned} & \hline 14- \\ & 15 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 15- \\ 16 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 16- \\ & \hline 17 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 17- \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 18- \\ & 19 \end{aligned}$	$\begin{aligned} & 19- \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 20- \\ & 21 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 21- } \\ & 22 \\ & \hline \end{aligned}$	$\begin{aligned} & 22- \\ & 23 \end{aligned}$
$\begin{gathered} \text { Student } \\ \text { s } \\ \text { appeare } \\ \text { d for } \\ \text { exam } \end{gathered}$	200	$\begin{gathered} 30 \\ 0 \end{gathered}$	$\begin{gathered} 10 \\ 0 \end{gathered}$	50	$\begin{gathered} 15 \\ 0 \end{gathered}$	$\begin{gathered} 40 \\ 0 \end{gathered}$	$\begin{gathered} 25 \\ 0 \end{gathered}$	$\begin{gathered} 15 \\ 0 \end{gathered}$	25	75
	124	$\begin{gathered} 18 \\ 0 \end{gathered}$	65	34	99	$\begin{gathered} 25 \\ 2 \end{gathered}$	$\begin{gathered} 14 \\ 5 \end{gathered}$	81	12	33

For Internal Circulation and Academic
Purpose Only

Calculation of PE Probable Error

Probable Error helps in interpreting the value of Coefficient of Correlation. It tells us about the reliability of the value of Coefficient of Correlation. It is obtained by the following formula:

$$
\text { P.E. } r=0.6745 \frac{1-\mathbf{r}^{2}}{\sqrt{\mathrm{~N}}}
$$

> If the value of r is less than PE then r is not at all significant i.e. there is no evidence of correlation.
> If value of r is 6 times the value PE then r is significant i.e. there is a certain evidence of correlation.
> By adding and subtracting the PE from r we get the upper and lower limits within which the coefficient of correlation of population is expected to lie.

EXAMPLE

Calculate Probable Error and the limits of correlation in population given that $r=0.8$ and number of pairs in observed sample is 16 .

P.E.r $=0.06$ Purpose Only

The following table gives the distribution of items of production and also the relatively defective items among them, according to size groups. Find the correlation coefficient between size and defect quality and its probable error.

Size Group	$15-16$	$16-17$	$17-18$	$18-19$	$19-20$	$20-21$
Number of Items	200	270	340	360	400	300
Number of defective Items	150	162	170	180	180	114

Calculation of Coefficient of Determination

The square of the coefficient of correlation is known as Coefficient of Determination.

\mathbf{r}^{2}

It tells us about what amount of variation in dependent variable has been explained by independent variable.

Assume that the coefficient of correlation between rainfall and per acre yield of rice is 0.8 . Find out the coefficient of determination and comment on its value.

Coefficient of determination = r2 $(0.8)^{2}=0.64$

Comments:

0.64 Coefficient of Determination means that 64\% variation in per acre yield of rice (Dependent Variable) is explained by rainfall (Independent Variable). 36\% variation is unexplained by rainfall; it may be due to other factors such as use of fertilizers, soil and seed quality, etc.

Following table gives the results of an examination. Calculate Karl Pearson's Correlation Coefficient and its probable error? Also comment if the value of correlation coefficient obtained is significant or not.

Age	$13-14$	$14-15$	$15-16$	$16-17$	$17-18$
percent age of failures	39	40	43	43	36
Age	$18-19$	$19-20$	$20-21$	$21-22$	
percent age of failures	39	48	44	56	

$$
r=+0.658 \text { and } \mathrm{PEr}=0.127
$$

Calculation of Correlation Coefficient in Grouped Data

Calculate the coefficient of correlation for the following data.

$\begin{aligned} & \text { AGE OF } \\ & \text { HUSBAN } \end{aligned}$DS	AGE OF WIVES					
	$\begin{aligned} & 10- \\ & 20 \end{aligned}$	$\begin{aligned} & 20- \\ & 30 \end{aligned}$	$\begin{gathered} 30- \\ 40 \end{gathered}$	$\begin{aligned} & 40- \\ & 50 \end{aligned}$	$\begin{gathered} 50- \\ 60 \end{gathered}$	TOTA
15-25	6	3	-	-	-	9
25-35	3	15	11	-		29
35-45	-	11	14	7	-	32
45-55	-	-	6	12	3	21
55-65		-	-	3	6	9
TOTAL	9	29	31	22	9	100

FORMULA

$$
r=\frac{N \sum f d x d y-\left\{\left(\sum f d x\right) x\left(\sum f d y\right)\right\}}{\sqrt{N \sum f d x^{2}-\left(\sum \mathrm{fdx}\right)^{2}} \sqrt{N \sum f d y^{2}-\left(\sum f d y\right)^{2}}}
$$

			X	$\begin{array}{\|l\|} \hline 10- \\ \hline 20 \\ \hline \end{array}$	$\begin{aligned} & 20- \\ & 30 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 30- \\ \hline 40 \\ \hline \end{array}$	$\begin{gathered} 40- \\ 50 \end{gathered}$	$\begin{array}{\|c\|} \hline 50- \\ \hline 60 \\ \hline \end{array}$	Total	fdY	$\mathrm{fd}^{\mathbf{2}}$	fdxd y
			MV	15	25	35	45	55				
		$\begin{gathered} \text { dX (X- } \\ 35) \end{gathered}$		-20	-10	0	10	20				
Y	MV	$\begin{gathered} \mathrm{dY} \\ \mathbf{Y - 4 0} \end{gathered}$		-2	-1	0	1	2				
$\begin{gathered} 15- \\ 25 \end{gathered}$	20	-20	-2	6	3	-	-	-	9	-18	36	30
$\begin{gathered} 25- \\ 35 \end{gathered}$	30	-10	-1	3	15	11	-	-	29	-29	29	21
$\begin{array}{\|c} \hline 35- \\ 45 \end{array}$	40	0	0	-	11	14	7	-	32	0	0	0
$\begin{array}{\|c} \hline 45- \\ 55 \end{array}$	50	10	1	-	-	6	12	3	21	21	21	18
$\begin{gathered} 55- \\ 65 \\ \hline \end{gathered}$	60	20	2	-	-	-	3	6	9	18	36	30
Tota I				9	29	31	22	9	100	$\begin{gathered} \Sigma \mathrm{fdY} \\ =-8 \end{gathered}$	$\begin{gathered} \Delta \mathrm{fdY} \\ = \\ = \\ \hline \mathbf{1 2 2} \end{gathered}$	\checkmark
			fdX	-18	20	${ }^{\text {cir }} \mathbf{O}^{\text {ioiol }}$	22^{2}	-18	$\begin{gathered} \Sigma \mathrm{fdX} \\ =-7 \end{gathered}$			

$$
r=\frac{100 \times 99(-7 \times-8)}{\sqrt{100 \times 123-(-7)^{2}} \sqrt{100 \times 122-(-8)^{2}}}
$$

$r=+0.8073$

RANK CORRELATION

 (SPEARMAN'S correlation COEFFICIENT)$$
R=1-\frac{6 \sum D^{2}}{N\left(N^{2}-1\right)}
$$

When Ranks are given:
$>$ Take the differences of two ranks (R1 - R2) and denote these differences by D.
$>$ Square these differences and obtain the total $\sum \mathrm{D} 2$
> Apply the formula given above.

EXAMPLE

The ranking of 10 students in two subjects A and B are given below. Calculate the Spearman's Correlation Coefficient.

A	6	5	3	10	2	4	9	7	8	1
B	3	8	4	9	1	6	10	7	5	2

R1	R2	$(\mathrm{R} 1-\mathrm{R} \mathbf{2})=\mathrm{D}$	D^{2}	$\mathbf{R}=1-\frac{6 \sum D^{2}}{\mathbf{N}\left(\mathbf{N}^{2}-1\right)}$
6	3	3	9	
5	8	-3	9	$R=1-\frac{6 \times 36}{10\left(10^{2}-1\right)}$
3	4	-1	1	
10	9	1	1	
2	1	1	1	$\mathrm{R}=0.782$
14	6	-2	4	
9	10	-1	1	
7	7	0	0	
8	5	3	9	
1	2	-1	1	
		$\Sigma D^{2}=$	36	

For Internal Circulation and Academic
Purpose Only

Two ladies were asked to rank 7 different types of lipsticks. The ranks given by them are as follows:
Calculate Spearman's rank correlation coefficient.

Lipstids	A	B	C	D	E	F	G
Neelu	2	1	4	3	5	7	6
Neena	1	3	2	4	5	6	7

(Answer: 0.786)

For Internal Circulation and Academic
Purpose Only

Ten competitors in a beauty contest are ranked by three judges in the following order.

1st judge	1	6	5	10	3	2	4	9	7	8
2nd judge	3	5	8	4	7	10	2	1	6	9
3rd judge	6	4	9	8	1	2	3	10	5	7

Use the rank correlation coefficient to determine which pair of judges has the nearest approach to common tastes in beauty.

(Answer: Pair of 1 and $3, R=0.636$)

For Internal Circulation and Academic
Purpose Only

Where Ranks are NOT given:

$>$ Assign the ranks by taking either the highest value or lowest value as 1 and find out the R.

Calculate the Spearman's coefficient of correlation between marks given to ten students by judges X and Y in a certain competitive examination.

Student No.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
Marksby judgeX	52	53	42	60	45	41	37	38	25	27
Marksy judgey Y	65	68	43	38	77	48	35	30	25	50

[^0]Purpose Only

Where Ranks are EQUAL:

$>$ In some cases it may be found necessary to rank two or more entries as equal. In such a case it is customary to give each individual an average rank.
$>$ Thus, if two entries are ranked equal at 5th place they are each given the rank (5+6)/2 = 5.5 while if 3 are ranked equal at 5th place they are given the rank $(5+6+7) / 3=6$.
$>$ Where equal ranks are assigned to some entries an adjustment in the formula for calculating the rank coefficient of correlation is made.
$>$ The adjustment consists of adding $1 / 12\left(m^{\wedge} 3-m\right)$ to the value of $\sum D^{\wedge} 2$.
$>$ Here, m stands for number of items whose ranks are common.

EXAMPLE

Obtain the rank correlation coefficient between the variables X and Y from the following pairs of observed values.

X	50	55	65	50	55	60	50	65	70	75
Y	110	110	115	125	140	115	130	120	115	160

Number of repetitions in series X

50 is repeated 3 times ($\mathrm{m}=3$)
55 is repeated 2 times ($\mathrm{m}=2$)
65 is repeated 2 times ($\mathrm{m}=2$)
Number of repetitions in series \mathbf{Y}
115 is repeated 3 times $(m=3)$
110 is repeated 2 times ($\mathrm{m}=2$)

$$
\mathrm{R}=1-\frac{6\left[\mathrm{D}^{2}+\frac{1}{12}\left(\mathrm{~m}^{3}-\mathrm{m}\right)+\frac{1}{12}\left(\mathrm{~m}^{3}-\mathrm{m}\right)+\frac{1}{12}\left(\mathrm{~m}^{3}-\mathrm{m}\right)+\frac{1}{12}\left(\mathrm{~m}^{3}-\mathrm{m}\right)+\frac{1}{12}\left(\mathrm{~m}^{3}-\mathrm{m}\right)\right]}{\mathrm{N}\left(\mathrm{~N}^{2}-1\right)}
$$

EXAMPLE

Obtain the rank correlation coefficient between the variables X and Y from the following pairs of observed values.

X	15	10	20	28	12	10	16	18
Y	16	14	10	12	11	15	18	12

ANSWER: $\quad R=-0.369$

EXAMPLE

Obtain the rank correlation coefficient between the variables X and Y from the following pairs of observed values.

X	40	50	60	60	80	50	70	60
\mathbf{Y}	80	120	160	170	130	200	210	130

ANSWER: $\quad \mathbf{R}=\mathbf{0 . 4 2 9}$

EXAMPLE

Obtain the rank correlation coefficient from the following data.

Sr
 No.

Rank
-2
? $-1+3+2$
$\begin{array}{lll}0 & -4 & +3\end{array}$
$+3$
-2
Diff.

$$
0
$$

9	10

ANSWER: $\quad \mathbf{R}=\mathbf{0 . 6 3 6}$

For Internal Circulation and Academic
Purpose Only

EXAMPLE

The coefficient of rank correlation of marks in two subjects for a group of 10 students was found to be 0.5 .

It was later noticed that the difference in ranks in two subjects of one student was wrongly taken as 3 instead of 7 .

Find the correct value of Rank Correlation.

ANSWER: $\quad \mathbf{R}=\mathbf{0 . 2 5 8}$

References and Suggested Readings

Fundamentals of Statistics by S.C. Gupta
Statistics Methods by S.P.Gupta

[^0]: For Internal Circulation and Academic

